Single-crystal X-ray diffraction of microlite-group minerals from Volta Grande pegmatites, Sao Joao del-Rei, Minas Gerais, Brazil.

M.B. Andrade^a, D. Atencio^b and J. Ellena^a

Pyrochlore-supergroup minerals research is being increased in the last years due to their physical and chemical properties. The prediction and development of pyrochlore-like structure materials expanded the number of technological applications such as oxide superconductors and nuclear-waste disposals. Unfortunately, Brazilian occurrences are only partially characterized. Microlite-group minerals belong to the pyrochlore-supergroup structure with A₂B₂X₆Y stoichiometry. They crystallize in the cubic space group Fd-3m, Z = 8 with a = 10.4 to 10.6 Å. Selected samples from Volta Grande pegmatites, Nazareno pegmatite province, Sao Joao del-Rei, Minas Gerais, Brazil, were studied by electro microprobe and single crystal X-raydiffraction. Chemical analyses were carried out by means of an electron microprobe (WDS mode, 15kV, 20 nA, 1 μ m beam diameter). The crystal structure were studied using Mo K α (λ = 0.71073 Å) radiation on an Enraf-Nonius Kappa-CCD diffractometer. After this, the crystal structure has been solved and refined using X-ray reflections $[I_{obs}>2\sigma(I)]$ and compositional microprobe constraints from electron analyses (Ca,Na,Mn,Sr,Ba,Pb,Ce,U)_{0.35}(Ta,Nb,Si,As,Al)₂O₆. The occurrence of H₂O at or in the vicinity of the A(16d) and Y(8b) sites due its vacancies was investigated too.

This research is supported by FAPESP award 2008/04984-7.

^aDepartamento de Física e Informática, Instituto de Física (USP), São Carlos, Brazil.

^bInstituto de Geociências (USP),São Paulo,Brazil.