Crescimento e caracterização de cristais mistos da família do sal de Tutton.

L. B. Valle^a, G. J. Perpétuo^a, C. J. Franco^b, R. F. Bianchi^b, K. M. Novack^b e F. M. Souza^c.

^aDepartamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Brasil.

^bDepartamento de Química, Universidade Federal de Ouro Preto, Ouro Preto, Brasil.

^cDepartamento de Engenharia Metalúrgica e Materiais, Escola Politécnica, Universidade de São Paulo, São Paulo, Brasil.

Cristais da família do sal de Tutton têm sido largamente estudados nos últimos anos com o objetivo de se compreender suas propriedades, principalmente, aquelas relacionadas a distorções estruturais tipo Jahn-Teller[1, 2]. A estrutura cristalográfica é monoclínica e o grupo espacial P2/c

Cristais mistos do tipo $A_{2x}C_{2(1-x)}E(SO_4)_2.6H_2O$ e $C_2D_xE_{(1-x)}(SO_4)_2.6H_2O$ A e C=K, Ce, NH4, Rb, D e E=Co, Ni, Zn, Mn, Mg, Fe, Cu, V, Cd, 0.0 < x < 1.0, foram crescidos para algumas séries e estão sendo estudados com o objetivo de compreender os processos de crescimento de cristais, possíveis aplicações tecnológicas, suas propriedades físicas e os mecanismos de transições de fases estruturais que possivelmente possam estar presentes em muitos destes cristais.

O interesse por estes materiais se deve ao fato deles apresentar fenômenos físicos que os tornam atraentes para investigação científica, aplicações tecnológicas como o (NH₄)₂Zn(SO₄)₂.6H₂O e o Rb₂Ni(SO₄)₂.6H₂O[3]. Um outro aspecto a ser mencionado é o fato de se poder bons monocristais em praticamente todo o intervalo de composição tornando-se assim atraentes para o estudo de fenômenos associados a soluções diluídas.

Neste trabalho serão apresentados resultados de crescimento de cristais de algumas destas séries e resultados de medidas difração de raios-x, AFM, XPS e análise térmica (TG/DTA, DSC) obtidos nestes cristais.

Medidas de TG/DTA nas séries $(NH_4)_2Ni_xCo_{(1-x)}(SO_4)_2.6H_2O$ e $K_2Ni_xCo_{(1-x)}(SO_4)_2.6H_2O$ revela um rico processo de decomposição em temperaturas entre 100^0C e 700^0C e a evidência de que as energias de ligação das seis moléculas de água com o íon Ni^{2^+} e Co^{2^+} são diferentes mostrando que o octaedro formado pelas moléculas de água é deformado. Estudo de AFM mostra que o modo de crescimento predominante na série $(NH_4)_2Ni_xCo_{(1-x)}(SO_4)_2.6H_2O$ é o de platôs com altura média de 5 Å isto é meio parâmetro de rede. Estes e outros resultados serão apresentados e discutidos.

Referências:

- [1] Zhan Chen, Suli Fei, Strauss, H. L., J. Am. Chem. Soc., 120, p. 8789, (1998).
- [2] Dobe, C., et al., Inorg. Chem., 42, p. 8524 (2003).
- [3] X. Wang et al., Opt. Mater. (2008), doi:10.1016/j.optmat.2008.03.020

Agradecimentos: FAPEMIG; CNPq; UFOP.