Structural Analysis of Mesoporous SiO₂:ZrO₂-90%CeO₂

R. Bacani^a, M. C. A. Fantini^a e T. S. Martins^b.

^aInstituto de Física, Universidade de São Paulo, São Paulo, Brasil. ^bUniversdade Federal de São Paulo, Diadema, Brasil.

The synthesis of ZrO₂-x%CeO₂ ordered mesoporous structures for catalytic applications is a research area under development. These systems are also potential candidates as anodes in intermediate temperature solid oxide fuel cells (IT-SOFC) due to an enhancement on their surface area [1-5]. The ordered mesoporous structure can be formed by the use of a polymeric template. The crystallization of the as-synthesized amorphous zirconia-ceria walls occurs at low temperature, around 300°C, promoting the collapse of the ordered network during the usual calcination process, necessary for the removal of the directing structure agent [6]. In this work, an attempt to preserve the ordered mesoporous structure after the polymeric template extraction was developed by depositing a palisade of silica over the triblock copolymer micelles before the growth of zirconia-ceria walls.

Samples containing 10 mol% of Si were prepared using TEOS as Si source, anhydrous CeCl₃ and ZrCl₄ precursors and Pluronic P-123 triblock co-polymer in an acidic medium (2molL⁻¹ HCl). The Ce/Zr atomic composition was x=0.9, which lead to a 100% cubic structure of the nanocrystalline walls, as determined X-ray diffraction (XRD).

Small Angle X-ray scattering (SAXS) measurements were performed in order to analyse the mesoporous (2-50nm) structure and XRD experiments were used to investigate the wall structure. Table 1 presents the improvement of surface areas obtained with the growth of the silica palisade.

Samples	Superficial Area (m ² /g)
Zr-Ce wt. 30% Si (Anh. Chlorines)	128.1
Zr-Ce wt. 10% Si (Anh. Chlorines)	72.7
Zr-Ce wt. 0% Si (Anh. Chlorines)	46.1
Zr-Ce wt. 0% Si (Nitrates)	8.7

Table 1: Superficial Area for samples with Ce/Zr=0.9mol.

The as-synthesized samples yielded better ordered porous structures compared to samples prepared without the palisade, but the usual calcination process up to 540° C destroyed the ordered network. Even though, the N₂ adsorption/desorption measurements showed a significant increase of the superficial area (Table 1). New synthesis with large pores, using a swelling agent and 30% Si content will be reported, as well as other strategies to remove the template.

[1] D. Y. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, *Science* **279**, 548 (1998).

[2] C. Yu, Y. Yu, D.Zhao, Chem. Comm. 575 (2000).

[3] M. Mamak, N. Coobs y G. Ozin, J. Am. Chem. Soc. 122, 8932(2000).

[4] P. D. Yang, D. Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D.Stucky, *Chem. Materials* **11**, 2813 (1999).

[5] F. L. Chen, M.L. Liu, J. Mater. Chem. 2603 10 (2000).

[6] R. Bacani, T.S. Martins, M.C.A. Fantini, J. R. Matos, D. G. Lamas, *Book of Abstracts of the 9th. International Conference on Nanostructured Materials*, June 1-6 (2008), Rio de Janeiro, Brazil

Aknowledgements: CNPq.